Sign In

Cira

 

 

 

Icing Wind Tunnel<img alt="" src="http://webtest.cira.it/PublishingImages/IWT1.jpg" style="BORDER:0px solid;" />https://www.cira.it/en/research-infrastructures/icing-wind-tunnel-(iwt)/Icing Wind TunnelIcing Wind Tunnel<h3><span lang="EN-GB"></span>Description and operational capabilities</h3><p style="text-align:justify;">The Icing Wind Tunnel is a plant for ice and aerodynamic testing. It is unique in the world, in size and operational envelope:</p><p style="text-align:justify;">Icing Testing: reproduce natural icing conditions in compliance with FAR Part 25 and Part 29 Appendix C criteria and their extension to SLD (Supercooled Large Droplets) cloud conditions (Appendix O) for design and certification of aircraft/rotorcraft subsystems; </p><p style="text-align:justify;"> Aerodynamic Testing: support both low and high subsonic aerodynamic aircraft/rotorcraft research by increasing Reynold’s number with use of cooling (up to -40 °C) and the variation of static pressure (up to 1.45 bar). </p><h3><span lang="EN-GB">Technical Features</span></h3><p style="text-align:justify;"><span lang="EN-GB"></span><span lang="EN-GB">The IWT is a closed loop wind tunnel, with the capability to cooling down and pressurize/de-pressurize the airflow. For either icing or aerodynamic test campaign, three interchangeable test sections and an open jet configuration are available. A dedicated cooling plant regulates the air flow temperature by refrigerating the air via a twin row Heat Exchanger, which is located in the back leg, upstream the third corner, and down stream the fan. The minimum static temperature achievable in the test section is –32°C for the MTS (Main Test Section), for the ATS (Additional Test Section), and for the Open Jet configuration. The Secondary Test Section can get down to –40°C. A pressurization/de-pressurization system allows the static pressure to be regulated between 0.39 bars and 1.45 bars to simulate pressure altitude up to 7,000 meters during the icing tests and to increase the maximum Reynolds number for the aerodynamic tests.<br><br> The table in below reports the main characteristics of three test sections and Open Jet configuration.</span> </p><table class="ms-rteTable-4 " cellspacing="0" style="width:100%;"><tbody><tr class="ms-rteTableHeaderRow-4"><th class="ms-rteTableHeaderEvenCol-4" rowspan="1" colspan="1" style="width:20%;height:31px;">​<strong>TEST SECTION</strong></th><th class="ms-rteTableHeaderOddCol-4" rowspan="1" colspan="1" style="width:20%;height:31px;"><strong>DIMENSION (m)</strong></th><th class="ms-rteTableHeaderEvenCol-4" rowspan="1" colspan="1" style="width:20%;height:31px;"><strong>​SPEED (Mach)</strong></th><th class="ms-rteTableHeaderOddCol-4" rowspan="1" colspan="1" style="width:20%;height:31px;"><strong>​TEMPERATURE (°C)</strong></th><th class="ms-rteTableHeaderEvenCol-4" rowspan="1" colspan="1" style="width:20%;height:31px;"><strong>​ALTITUDE (m)</strong></th></tr><tr class="ms-rteTableOddRow-4"><td class="ms-rteTableEvenCol-4">​MAIN<br></td><td class="ms-rteTableOddCol-4">​2.25 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.41</td><td class="ms-rteTableOddCol-4">​-32 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​7000</td></tr><tr class="ms-rteTableEvenRow-4"><td class="ms-rteTableEvenCol-4">​SECONDARY</td><td class="ms-rteTableOddCol-4">​1.15 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.70</td><td class="ms-rteTableOddCol-4">​​-40 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​​7000</td></tr><tr class="ms-rteTableOddRow-4"><td class="ms-rteTableEvenCol-4">​ADDITIONAL</td><td class="ms-rteTableOddCol-4">​3.60 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.25</td><td class="ms-rteTableOddCol-4">​​-32 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​​7000</td></tr><tr class="ms-rteTableEvenRow-4"><td class="ms-rteTableEvenCol-4">​OPEN-JET</td><td class="ms-rteTableOddCol-4">​2.25 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.34</td><td class="ms-rteTableOddCol-4">​​-32 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​​7000</td></tr><tr class="ms-rteTableFooterRow-4"><td class="ms-rteTableFooterEvenCol-4" rowspan="1">​</td><td class="ms-rteTableFooterOddCol-4" rowspan="1">​</td><td class="ms-rteTableFooterEvenCol-4" rowspan="1">​</td><td class="ms-rteTableFooterOddCol-4" rowspan="1">​</td><td class="ms-rteTableFooterEvenCol-4" rowspan="1">​</td></tr></tbody></table><p> </p><p style="text-align:justify;"><span lang="EN-GB"></span><span lang="EN-GB">The Spray Bar Module (SBM) performs the cloud generation for ice accretion simulation on the test model and is located in the settling chamber at 18 meters upstream the center of test section. This system ensures the droplet residence time high enough to achieve super-cooled conditions even for large droplet sizes.<br> The SBM has 20 horizontal bars having a low drag aerodynamic shaped section, whose main feature is a low sensitivity to flow separation. Each bar is equipped with 50 spraying nozzle positions, for a maximum of 1000 possible spraying positions over 20 bars. The spray nozzles injects water droplets at specific concentration (Liquid Water Droplets, g m-3) and diameter (MVD, µm) that may changing with air and water pressure variation to generate the icing cloud.</span></p><h3><span lang="EN-GB">Partners</span></h3><p style="text-align:justify;"><span lang="EN-GB"></span><span lang="EN-GB">Aerodynamic and/or ice accretion test campaigns for aircraft/helicopter ice protection system efficiency evaluation: </span></p><ul><li><p><span lang="EN-GB"></span>Industries: K4A, Vulcanair, AleniaAermacchi, Dassault Aviation, Airbus FR-UK, NHI, GKN, Sonaca, Safran, Lockheed Martin, Goodrich, AVIC, COMAC, etc.</p></li><li><p><span lang="IT">Reserch Centre: CHRDI, SADRI, FAI, NLR</span></p></li></ul><p><span lang="IT"></span><span lang="IT"><span lang="EN-GB">Study on methodologies for measurement of severe aircraft icing conditions (freezing drizzle, freezing rain, glaciated & mixed-phase clouds), and artificial cloud generation in collaboration with international research centres (CNR-ISAC, CNR-Istituto Motori, University of Ferrara, University of Napoli "Federico II", NASA Glenn Research Center, Environment Canada, National Research Council of Canada, CNRS, DLR, DGA, UK Met Office, Meteo France, )</span> </span></p><dir><dir><p><span lang="EN-GB"></span><font color="#222222" face="Calibri" size="2"><font color="#222222" face="Calibri" size="2"><font color="#222222" face="Calibri" size="2"></font></font></font> </p></dir></dir><p style="text-align:justify;">The Icing Wind Tunnel is a plant for ice and aerodynamic testing. It is unique in the world, in size and operational envelope:</p><p style="text-align:justify;">Icing Testing: reproduce natural icing conditions in compliance with FAR Part 25 and Part 29 Appendix C criteria and their extension to SLD (Supercooled Large Droplets) cloud conditions (Appendix O) for design and certification of aircraft/rotorcraft subsystems;</p><p style="text-align:justify;">Aerodynamic Testing: support both low and high subsonic aerodynamic aircraft/rotorcraft research by increasing Reynold’s number with use of cooling (up to -40 °C) and the variation of static pressure (up to 1.45 bar).</p><p style="text-align:justify;"><span lang="EN-GB"></span><span lang="EN-GB">The IWT is a closed loop wind tunnel, with the capability to cooling down and pressurize/de-pressurize the airflow. For either icing or aerodynamic test campaign, three interchangeable test sections and an open jet configuration are available. A dedicated cooling plant regulates the air flow temperature by refrigerating the air via a twin row Heat Exchanger, which is located in the back leg, upstream the third corner, and down stream the fan. The minimum static temperature achievable in the test section is –32°C for the MTS (Main Test Section), for the ATS (Additional Test Section), and for the Open Jet configuration. The Secondary Test Section can get down to –40°C. A pressurization/de-pressurization system allows the static pressure to be regulated between 0.39 bars and 1.45 bars to simulate pressure altitude up to 7,000 meters during the icing tests and to increase the maximum Reynolds number for the aerodynamic tests.<br><br>The table in below reports the main characteristics of three test sections and Open Jet configuration.</span> </p><table class="ms-rteTable-4 " cellspacing="0" style="width:1650px;"><tbody><tr class="ms-rteTableHeaderRow-4"><th class="ms-rteTableHeaderEvenCol-4" rowspan="1" colspan="1" style="width:319px;height:31px;">​<strong>TEST SECTION</strong></th><th class="ms-rteTableHeaderOddCol-4" rowspan="1" colspan="1" style="width:319px;height:31px;"><strong>DIMENSION (m)</strong></th><th class="ms-rteTableHeaderEvenCol-4" rowspan="1" colspan="1" style="width:319px;height:31px;"><strong>​SPEED (Mach)</strong></th><th class="ms-rteTableHeaderOddCol-4" rowspan="1" colspan="1" style="width:319px;height:31px;"><strong>​TEMPERATURE (°C)</strong></th><th class="ms-rteTableHeaderEvenCol-4" rowspan="1" colspan="1" style="width:319px;height:31px;"><strong>​ALTITUDE (m)</strong></th></tr><tr class="ms-rteTableOddRow-4"><td class="ms-rteTableEvenCol-4">​MAIN<br></td><td class="ms-rteTableOddCol-4">​2.25 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.41</td><td class="ms-rteTableOddCol-4">​-32 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​7000</td></tr><tr class="ms-rteTableEvenRow-4"><td class="ms-rteTableEvenCol-4">​SECONDARY</td><td class="ms-rteTableOddCol-4">​1.15 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.70</td><td class="ms-rteTableOddCol-4">​​-40 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​​7000</td></tr><tr class="ms-rteTableOddRow-4"><td class="ms-rteTableEvenCol-4">​ADDITIONAL</td><td class="ms-rteTableOddCol-4">​3.60 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.25</td><td class="ms-rteTableOddCol-4">​​-32 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​​7000</td></tr><tr class="ms-rteTableEvenRow-4"><td class="ms-rteTableEvenCol-4">​OPEN-JET</td><td class="ms-rteTableOddCol-4">​2.25 x 2.35</td><td class="ms-rteTableEvenCol-4">​0.34</td><td class="ms-rteTableOddCol-4">​​-32 < Ts < +40</td><td class="ms-rteTableEvenCol-4">​​7000</td></tr><tr class="ms-rteTableFooterRow-4"><td class="ms-rteTableFooterEvenCol-4" rowspan="1">​</td><td class="ms-rteTableFooterOddCol-4" rowspan="1">​</td><td class="ms-rteTableFooterEvenCol-4" rowspan="1">​</td><td class="ms-rteTableFooterOddCol-4" rowspan="1">​</td><td class="ms-rteTableFooterEvenCol-4" rowspan="1">​</td></tr></tbody></table><p> </p><p style="text-align:justify;"><span lang="EN-GB"></span><span lang="EN-GB">The Spray Bar Module (SBM) performs the cloud generation for ice accretion simulation on the test model and is located in the settling chamber at 18 meters upstream the center of test section. This system ensures the droplet residence time high enough to achieve super-cooled conditions even for large droplet sizes.<br>The SBM has 20 horizontal bars having a low drag aerodynamic shaped section, whose main feature is a low sensitivity to flow separation. Each bar is equipped with 50 spraying nozzle positions, for a maximum of 1000 possible spraying positions over 20 bars. The spray nozzles injects water droplets at specific concentration (Liquid Water Droplets, g m-3) and diameter (MVD, µm) that may changing with air and water pressure variation to generate the icing cloud.</span></p><p style="text-align:justify;"><span lang="EN-GB"></span><span lang="EN-GB">Aerodynamic and/or ice accretion test campaigns for aircraft/helicopter ice protection system efficiency evaluation:</span></p><ul><li><p><span lang="EN-GB"></span>Industries: K4A, Vulcanair, AleniaAermacchi, Dassault Aviation, Airbus FR-UK, NHI, GKN, Sonaca, Safran, Lockheed Martin, Goodrich, AVIC, COMAC, etc.</p></li><li><p><span lang="IT">Reserch Centre: CHRDI, SADRI, FAI, NLR</span></p></li></ul><p><span lang="IT"></span><span lang="IT"><span lang="EN-GB">Study on methodologies for measurement of severe aircraft icing conditions (freezing drizzle, freezing rain, glaciated & mixed-phase clouds), and artificial cloud generation in collaboration with international research centres (CNR-ISAC, CNR-Istituto Motori, University of Ferrara, University of Napoli "Federico II", NASA Glenn Research Center, Environment Canada, National Research Council of Canada, CNRS, DLR, DGA, UK Met Office, Meteo France, )</span> </span></p>

 Media gallery

 

 

Test Falcon in IWThttps://www.cira.it/PublishingImages/Forms/DispForm.aspx?ID=838Test Falcon in IWTImagehttps://www.cira.it/PublishingImages/test Falcon in IWT.JPG
Test in IWThttps://www.cira.it/PublishingImages/Forms/DispForm.aspx?ID=837Test in IWTImagehttps://www.cira.it/PublishingImages/test in IWT.jpg
Esterno galleria IWThttps://www.cira.it/PublishingImages/Forms/DispForm.aspx?ID=835Esterno galleria IWTImagehttps://www.cira.it/PublishingImages/Esterno galleria IWT.jpg
Impianto Icing Wind Tunnelhttps://www.cira.it/PublishingImages/Forms/DispForm.aspx?ID=258Impianto Icing Wind TunnelImagehttps://www.cira.it/PublishingImages/IWT1.jpg
Spray bar in funzione per la generazione della nuvolahttps://www.cira.it/PublishingImages/Forms/DispForm.aspx?ID=836Spray bar in funzione per la generazione della nuvolaImagehttps://www.cira.it/PublishingImages/spray bar in funzione.jpg

 Read Also